Tailoring Properties of Single Layer Transition Metal Dichalcogenides: Looking Beyond Graphene*

Talat S. Rahman
Department of Physics, University of Central Florida, Orlando

Single-layer of molybdenum disulfide (MoS$_2$) and other transition metal dichalcogenides appear to be promising materials for next generation nanoscale applications (optoelectronic and catalysis), because of their low-dimensionality and intrinsic direct band-gap which typically lies in the visible spectrum. Several experimental groups have already reported novel electronic and transport properties which place these materials beyond graphene for device applications. MoS$_2$ is known to be a leading hydrodesulfurization catalyst. Efforts are underway to further tune these optoelectronic and catalytic properties through alloying, defects, doping, coupling to a substrate, and formation of bilayer stacks (homo- and hetero-structures). In this talk I will present results from joint theoretical and experimental investigations [1-3] which provide a framework for manipulating the functionality of this **wundermaterial** and take us closer to the goal of rational material design. My emphasis will be on the structural, optical and catalytic properties of pure and defect-laden single layer MoS$_2$ and their possible technological applications.

*Work done in collaboration with D. Le, V. Turkowski, T. Rawal, L. Bartels, and P. Dowben and supported by US-DOE.