Review Exam 3
Chapters
14
15
16

all gas reac	U	ogen mono	e the rate law for the xide reacting with and water
Experiment	moles NO	moles H ₂	Initial Rate (M/s)
1	0.10	0.10	1.23 x 10 ⁻³
2	0.10	0.20	2.46 x 10 ⁻³
3	0.20	0.10	4.92 x 10 ⁻³
W	rite, balance	, and interpr	et reaction
2 NC	$(g) + 2 H_2$	(g) \rightarrow N ₂ (g	$() + 2 H_2 O (g)$
	Rate ∘	< [NO] [×] [H	2] Y

				_
2 NC	$(g) + 2 H_2$	$(g) \rightarrow N_2$	$(g) + 2 H_2 O (g)$	
	Rate	× [NO] ^X [H	H ₂] ^Y	
Experiment	moles NO	moles H ₂	Initial Rate (M/s)	
1	0.10	0.10	1.23 x 10 ⁻³	
2	0.10	0.20	2.46 x 10 ⁻³	
3	0.20	0.10	4.92 x 10 ⁻³	
	Fron	n Exp 1 & 1	2	
	When [H ₂]			
	Rat	$e \propto [H_2]^1$	\mathbf{r}	

Rate ∝ [NO] X [H ₂] Y ixperiment moles NO moles H ₂ Initial Rate (M/s) 1 0.10 0.10 1.23 x 10 ⁻³ 2 0.10 0.20 2.46 x 10 ⁻³ 3 0.20 0.10 4.92 x 10 ⁻³ From Exp 2 & 3 When [NO] doubles, Rate quadruples Rate ~ [NO] 2 €	2 NO	$D(g) + 2H_2$	$(g) \rightarrow N_2$	$(g) + 2 H_2 O (g)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Rate	× [NO] ^X [H	H ₂] ^Y
2 0.10 0.20 2.46 x 10 ⁻³ 3 0.20 0.10 4.92 x 10 ⁻³ From Exp 2 & 3 When [NO] doubles, Rate quadruples	Experiment	moles NO	moles H ₂	Initial Rate (M/s)
3 0.20 0.10 4.92 x 10 ⁻³ From Exp 2 & 3 When [NO] doubles, Rate quadruples	1	0.10	0.10	1.23 x 10 ⁻³
From Exp 2 & 3 When [NO] doubles, Rate quadruples	2	0.10	0.20	2.46 x 10 ⁻³
When [NO] doubles, Rate quadruples	3	0.20	0.10	4.92 x 10 ⁻³
		From	n Exp 2 & 1	3
Rate \propto [NO] ² \leftarrow	W			
		Rat	$e \propto [NO]^2$	2 ←

Half-life $\{t_{1/2}\}$

is defined as the time required for one-half of a reactant to react

For $A \rightarrow B$

at $t_{\rm 1/2}$, the concentration of A is one-half the initial concentration of A

- Reactions occur through several discrete steps
- Each of these is known as an elementary reaction or elementary process
- The molecularity of a process tells how many molecules are involved in the process

	It has been proposed that the mecha 2 $O_3 \rightarrow 3 O_2$ proceeds by the following mecha	
(a) (b) (c)	step 1 $O_3 \rightarrow O_2 + O$ step 2 $O_3 + O \rightarrow 2 O_2$ Describe the molecularity of each elementary reaction in this mechanism. Does mechanism agree with balanced reaction? Identify the intermediate(s).	(a) 1. 1 st order 2. 2 nd order (b) Yes (c) O

Ozone reacts with nitrogen dioxide to produce dinitrogen pentoxide and oxygen

> Write and balance reaction $O_3 (g) + 2 NO_2 (g) \rightarrow N_2O_5 (g) + O_2 (g)$ The experimental rate law is

> > rate = $k[O_3][NO_2]$

Interpret results 1st order with respect to Ozone & nitrogent dioxide

The proposed mechanism for the reaction of
Ozone with Nitrogen dioxide isStep 1 $O_3(g) + NO_2(g) \Rightarrow NO_3(g) + O_2(g)$
step 2 $NO_3(g) + NO_2(g) \Rightarrow N_2O_5(g)$ Does the proposed mechanism agree with experiment?Yes, steps add to give $O_3 + 2 NO_2 \Rightarrow N_2O_5 + O_2$
What is the intermediate?
 $NO_3(g)$ Notation the relative rates of the two
steps of the mechanism?

 $\begin{array}{c} O_{3}\left(g\right)+2 \operatorname{NO}_{2}\left(g\right) \xrightarrow{} \operatorname{N}_{2}O_{5}\left(g\right)+O_{2}\left(g\right)\\ \text{Mechanism}\\ \text{step 1} \quad O_{3}\left(g\right)+\operatorname{NO}_{2}\left(g\right) \xrightarrow{} \operatorname{NO}_{3}\left(g\right)+O_{2}\left(g\right)\\ \text{step 2} \quad \operatorname{NO}_{3}\left(g\right)+\operatorname{NO}_{2}\left(g\right) \xrightarrow{} \operatorname{N}_{2}O_{5}\left(g\right) \end{array}$

The experimental rate law is rate = $k[O_3][NO_2]$ Because the rate law conforms to the molecularity of the

first step, that must be the rate-determining step.

The second step must be much faster than the first one.

The decomposition of Hydrogen Peroxide
 $2 H_2O_2 (aq) \rightarrow 2 H_2O (liq) + O_2(g)$
is catalyzed by iodide ionBy experiment the rate law is found to be
Rate = k[H_2O_2][I^]
The proposed mechanismStep 1 : $H_2O_2 + I \rightarrow H_2O + IO^-$ Step 2 : $H_2O_2 + IO \rightarrow H_2O + I^-$
Is this an acceptable mechanism ?
yes

THE COLLISION THEORY (Three parts)

- 1. Molecules can only react if they collide
- collide with sufficient energy*.
 *Activation Energy (*E_a*): The energy barrier that must be surmounted before reactants can be converted to products.
- 3. correctly oriented molecules

(a)
$$N_2(g) + 3 H_2(g) = 2 NH_3(g)$$

(b) $\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) = NH_3(g)$
(c) $\frac{1}{3} N_2(g) + H_2(g) = \frac{2}{3} NH_3(g)$
 $K_a = \frac{[NH_3]^2}{[N_2][H_2]^3} K_b = \frac{[NH_3]}{[N_2]^{1/2}[H_2]^{3/2}} K_c = \frac{[NH_3]^{2/3}}{[N_2]^{1/3}[H_2]}$
 $K_a = K_b^2 K_a = K_c^3 K_b^2 = K_c^3$

-	•	•	rium method
	2 SO ₂ (g)	+ $O_2(g)$	$= 2 SO_3(g)$
<u>Initial</u>	Moles	Moles	Moles
Change	-2x	-X	+ 2x
<u>Equilibrium</u>	Moles	Moles	Moles
Change to Co	oncentratio	ons at Eq	uilibrium

Г

H ₂	<u>(g</u> as) + I ₂ (g	as) = 2 HI((gas)
	H ₂ , <i>Moles</i>	I ₂ , <i>Moles</i>	HI , <i>Moles</i>
I nitially	1.000 x 10 ⁻³	2.000 x 10 ⁻³	0
C hange	-9.35 x 10 ⁻⁴	-9.35 x 10 ⁻⁴	+1.87 x 10 ⁻³
E quilibrium	6.5 x 10 ⁻⁵	1.065 x 10 ⁻³	1.87 x 10 ⁻³

the equilibrium constant

$$\mathcal{K}_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$= \frac{(1.87 \times 10^{-3})^{2}}{(6.5 \times 10^{-5})(1.065 \times 10^{-3})}$$

$$= 51$$
UNITS ?

Relationship between
$$K_c$$
 and K_p
 $Kp = Kc (RT)^{\Delta n}$
Where $\Delta n =$ (moles of gaseous product)
– (moles of gaseous reactant)
 $Kp = Kc$
 $For H_2(gas) + I_2(gas) = 2 HI(gas)$
WHY ?

For
$$2 N_2O_5(g) \leftrightarrow 4 NO_2(g) + O_2(g)$$

The K_p and K_c expressions :
 $K_p = (P_{NO2})^4 (P_{O2}) / (P_{N2O5})^2$
 $K_C = [NO_2]^4 [O_2] / [N_2O_5]^2$
Is $K_p = K_C$?
No !

HETEROGENEOUS EQUILIBRIUM

Pure Solids and Liquids do not have a concentration therefore they do not appear in the equilibrium expression $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl \text{ (solid)}$ or $AgCl \text{ (solid)} \rightarrow Ag^{+}(aq) + Cl^{-}(aq)$

$$\begin{split} K_{c} &= 1 \; / \; [Ag^{+}(aq) \;] \; [CI^{-}(aq) \;] \\ or \\ K_{sp} &= [Ag^{+}(aq) \;] \; [CI^{-}(aq) \;] \; = 1 / \; K_{c} \end{split}$$

Le Châtelier's Principle

Le Châtelier's Principle

- The Effect of Changes in Pressure
- The Effect of Changes in Temperature
- Catalysts increase the rate of both the forward *and* reverse reactions. Equilibrium is achieved faster, but the equilibrium composition remains unaltered.

$3 O_2(g) = 2 O_3(g)$ $\Delta H = 284 \text{ kJ}$

What would be the effect of

- (a) Decreasing the volume of the system
- (b) Increasing the pressure by adding O_2
- (c) Decreasing the temperature
- (d) Adding a catalyst

Chapter 16 Acids and Bases

• Arrhenius

- Acid: Hydronium ion (H_3O^+)
- Base: Hydroxide ions (OH⁻)
- Brønsted–Lowry
 - Acid: Proton donor
 - Base: Proton acceptor
- Lewis
 - Acid electron-pair acceptor
 - Base is an *electron-pair donor*

	r the 7 Strong Acids ong Bases
HCI (aq)	LiOH(aq)
HBr (aq)	NaOH(aq)
HI (aq)	KOH(aq)
HNO ₃ (aq)	RbOH(aq)
HClO ₃ (aq)	CsOH(aq)
HClO ₄ (aq)	Ba(OH) ₂ (aq)
$H_2SO_4(aq)$	Sr(OH) ₂ (aq)

	jugate bases of the sted-Lowry acids
HCIO₄	CIO ₄ -
H₂SO₄	HSO ₄ -
HSO₄ [−]	SO ₄ -
H₃O⁺	H ₂ O

		, 0	bases of the ds is incorrect?
(a) ClO⁻	for	HCIO	(\mathbf{o})
(b) HS⁻	for	H_2S	(e)
(c) NH ₃	for	NH_4^+	
(d) SO ₄ ²⁻	for	HSO4 ⁻	
(e) H ₂ SO ₄	for	HSO4 ⁻	

Ion-Product Constant

This special equilibrium constant is referred to as the ion-product constant for water, K_w

$$K_W = [H_3O^+] [OH^-]$$

At 25 °C,
$$K_w = 1.0 \times 10^{-14}$$

pH is defined as pH = $-\log [H_3O^+]$

		$\left[\mathrm{H}^{+}\right](M)$	pН	рОН	[OH ⁻] (M)
		- 1 (1×10 ⁻⁰)	0.0	14.0	1×10^{-14}
<u> </u>	Gastric juice	-1×10^{-1}	1.0	13.0	1×10^{-13}
acid	Lemon juice		2.0	12.0	1×10^{-12}
More acidic	Cola, vinegar	-1×10^{-3}	3.0	11.0	1×10^{-11}
×.	Wine	-1×10^{-4}	4.0	10.0	1×10^{-10}
	Banana – – – – – – – – – – – – – – – – –	-1×10^{-5}	5.0	9.0	1×10^{-9}
	Rain	-1×10^{-6}	6.0	8.0	1×10^{-8}
	Milk – – – – – – – – – – – – – – – – – – –	-1×10^{-7}	7.0	7.0	1×10 ⁻⁷
	Egg white, seawater Baking soda	-1×10^{-8}	8.0	6.0	1×10^{-6}
	Borax	- 1×10 ⁻⁹	9.0	5.0	1×10^{-5}
	Milk of magnesia	-1×10^{-10}	10.0	4.0	$1{ imes}10^{-4}$
basic	Lime water	-1×10^{-11}	11.0	3.0	1×10^{-3}
More basic	Household ammonia Household bleach	-1×10^{-12}	12.0	2.0	1×10^{-2}
2	NaOH, 0.1 M	-1×10^{-13}	13.0	1.0	1×10^{-1}
		-1×10^{-14}	14.0	0.0	1 (1×10 ⁻⁰)

Determine the pH of 0.50 *M* HF solution at 25 °C.
$$K_a = 7.1 \times 10^{-4}$$

1ST Write & Balance "Reaction"

$$\label{eq:HF} \begin{split} HF(aq) &= H^{\scriptscriptstyle +}(aq) \ + F^{\scriptscriptstyle -}(aq) \\ 2^{nd} \ Write Equilibrium Expression \end{split}$$

$$K_a = \frac{[\mathrm{H}^+][F^-]}{[HF]}$$

Determine pH of	0.50 <i>M</i> HF so	lution $K_a = 1$	7.1 x 10 ⁻⁴
	HF (aq) =	H^+ (aq)	+ F ⁻ (aq)
Initial (<i>M</i>):	0.50	0.00	0.00
Change(<i>M</i>):	x	+ X	+ X
Eqm (<i>M</i>):	0.50 – x	X	x

$$K_{a} = \frac{[\mathrm{H}^{+}][F^{-}]}{[HF]}$$

Ka = 7.1 x 10⁻⁴: [HF] = 0.50 - x; [H⁺] = [F⁻] = x
7.1×10⁻⁴ = $\frac{[x][x]}{[0.50 - x]} = \frac{x^{2}}{0.50 - x} \approx \frac{x^{2}}{0.50}$
x² \equiv (7.1 x 10⁻⁴)(0.50) \equiv 3.55 x 10⁻⁴
x \equiv 1.9 x 10⁻²

WAS THE APPROXIMATION VALID?

$$7.1 \times 10^{-4} = \frac{[x][x]}{[0.50 - x]} = \frac{x^2}{0.50 - x} \approx \frac{x^2}{0.50}$$
No!
Why not?
Because $x \approx 1.9 \times 10^{-2}$ is not small
compared to 0.50
 $0.50 - x \neq 0.50$

VALID APPROXIMATIONS ?

What was the difference between the two examples { HCN(aq) and HF(aq) } ? Both are monoprotic acids Both has an initial concentration of 0.50 M Right the difference was in the size of K_a $K_a = 7.1 \times 10^{-4}$ for HF $K_a = 4.9 \times 10^{-10}$ for HCN

% dissiciation of a 0.001*M* monoprotic weak acid
whose
$$K_a$$
 is 1.6 x 10⁻¹⁰ ?
% Dissociation = $\frac{[H^+]}{[HA]} \times 100\%$
% Dissociation = $\frac{[4.0x10^{-7}]}{[1x10^3]} \times 100$
% =4 x 10⁻²

$\mathrm{HA}(aq) \ \textbf{\rightarrow} \ \mathrm{H}^{+}(aq) \ + \ \mathrm{A}^{-}(aq)$				
Initial	0.001	0.00	0.00	
Change	- 0.001	+0.001	+0.001	
End	0.000	0.001	0.001	
pI	$H = -\log [H]$	$[+] = -\log 0.0$	001 = 3	

Find pOH		ution of Aniline (C ₆ H 8 x 10 ⁻¹⁰	I ₅ NH ₂),			
Write, Balance and interpret						
$C_6H_5NH_2$ (aq) + $H_2O = C_6H_5NH_3^+$ (aq) + OH (aq)						
Ι	0.10	0	0			
С	- X	х	x			
Е	0.10	х	x			
K	$K_{b} = \frac{[C_{6}H_{5}NH_{3}^{+}][OH^{-}]}{[C_{6}H_{5}NH_{2}]} = \frac{[x][x]}{[0.10 - x]} = 3.8x10^{-10}$					
x = [0	$OH^{-}] = 6.2 \times 10^{-5}$	$pOH = -log[OH^-] = 4$.2			

Acid–Base Properties of Salts

- Salts that produce neutral solutions are those formed from strong acids and strong bases. *For example NaCl*
- Salts that produce basic solutions are those formed from weak acids and strong bases. For example MgCl₂
- Salts that produce acidic solutions are those formed from strong acids and weak bases. *For example NaClO*