

Review Chap 14: CHEMIC AL KINETICS
CHEMICAL KINETICS DEALS WITH

1. How FAST \{Speed like miles per hour
and
2. By what MECHANISM Does a
Reaction Take Place ?

TEMPERATURE and RATE

- As temperature increases
so does the reaction rate
- The rate constant (k)
is temperature dependent
- The rule of thumb rate doubles for is: each 10 degree rise in temp

Half-life $\left\{t_{1 / 2}\right\}$

is defined as the time required for one-half of a reactant to react

For $\quad A \rightarrow B$ at $t_{1 / 2}$,
the concentration of A is one-half the initial concentration of A

In a chemical reaction bonds are broken \& bonds are formed

- The sequence of events that describes the actual process by which reactants become products is called the reaction mechanism.
- The mechanism MUST agree with experiment

In a chemical reaction bonds are broken \& bonds are formed
- The sequence of events that describes
the actual process by which reactants
become products is called the reaction
mechanism.
- The mechanism MUST agree with
experiment

All radioactive decay is $1^{\text {st }}$ order

$\ln \frac{[A]_{0}}{[A]}=k t$
At $t_{1 / 2}$ concentration is $1 / 2$ initial
$\ln \frac{[A]_{0}}{[1 / 2 A]_{0}}=\mathrm{kt}_{1 / 2}$

$$
\ln 2=k t_{1 / 2}
$$

The proposed mechanism for the reaction of Ozone with Nitrogen dioxide is

Step $1 \quad \mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ step $2 \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
Does the proposed mechanism agree with experiment?
Yes, steps add to give $\mathrm{O}_{3}+2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$
What is the intermediate?

$$
\mathrm{NO}_{3}(\mathrm{~g})
$$

What can be said about the relative rates of the two steps of the mechanism?
$\left.\begin{array}{|c|}\hline \begin{array}{c}\text { Ozone reacts with nitrogen dioxide to produce } \\ \text { dinitrogen pentoxide and oxygen }\end{array} \\ \text { Write and balance reaction } \\ \mathrm{O}_{3}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\ \text { The experimental rate law is } \\ \text { rate }=k\left[\mathrm{O}_{3}\right]\left[\mathrm{NO}_{2}\right] \\ \text { Interpret results }\end{array}\right]$
$\mathrm{O}_{3}(\mathrm{~g})+2 \underset{2}{\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})}$
Mechanism
Mechanism
step $1 \quad \mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ step $2 \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$

The experimental rate law is rate $=k\left[\mathrm{O}_{3}\right]\left[\mathrm{NO}_{2}\right]$
Because the rate law conforms to the molecularity of the first step, that must be the rate-determining step.
The second step must be much faster than the first one.

The decomposition of Hydrogen Peroxide $2 \mathrm{H}_{2} \mathrm{O}_{2}$ (aq) $\rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (liq) $+\mathrm{O}_{2}(\mathrm{~g})$ is catalyzed by iodide ion
By experiment the rate law is found to be
Rate $\left.=\mathrm{k}^{2} \mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$
The proposed mechanism
Step 1: $\quad \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-}$
Step 2:$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{IO}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}^{-}$ Is this an acceptable mechanism ? yes

THE COLLISION THEORY (Three parts)

1. Molecules can only react if they collide
2. collide with sufficient energy*.
${ }^{*}$ Activation Energy (E_{a}): The energy barrier that must be surmounted before reactants can be converted to products.
3. correctly oriented molecules

Arrhenius Equation

$$
\begin{aligned}
& \ln k=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+\ln \\
& A \\
& y=m \quad x+b
\end{aligned}
$$

If k is determined experimentally at several temperatures, E_{a} can be calculated from the slope of a plot of $\ln k$ vs. $\frac{1}{T}$

(a) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})$
(b) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})=\quad \mathrm{NH}_{3}(\mathrm{~g})$
(c) $1 / 3 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})=2 / 3 \mathrm{NH}_{3}(\mathrm{~g})$
$K_{a}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} K_{b}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2}\right]^{3 / 2}} K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2 / 3}}{\left[\mathrm{~N}_{2}\right]^{1 / 3}\left[\mathrm{H}_{2}\right]}$

$$
\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{b}}^{2} \quad \mathrm{~K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{c}}^{3} \quad \mathrm{~K}_{\mathrm{b}}^{2}=\mathrm{K}_{\mathrm{c}}^{3}
$$

Arrhenius Equation

Svante Arrhenius developed a mathematical relationship between k and E_{a} :

$$
k=A e^{\frac{-E_{a}}{R T}}
$$

Taking the natural logarithm of both sides, the equation becomes
$\ln k=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+\ln A$

Chapter 15

 Chemical EquilibriumThe reaction for the production of ammonia can be written in a number of ways
(a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})$
(b) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{NH}_{3}(\mathrm{~g})$
(c) $1 / 3 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})=2 / 3 \mathrm{NH}_{3}(\mathrm{~g})$

Write the equilibrium constant expressions and how they are related

The Equilibrium Constant

The ratio of the rate constants is a constant at that temperature, and the expression becomes

$$
K_{e q}=\frac{k_{f}}{k_{r}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}
$$

The Initial Change Equilibrium method is used to calculate equilibrium constant

	$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=$	$2 \mathrm{SO}_{3}(\mathrm{~g})$	
$\underline{\text { Initial }}$	Moles	Moles	Moles
Change	-2 x	-x	+2 x
Equilibrium	Moles	Moles	Moles

Change to Concentrations at Equilibrium

$\mathrm{H}_{2}($ gas $)+\mathrm{I}_{2}($ gas $)=2 \mathrm{HI}$ (gas)				
H_{2}, Moles I_{2}, Moles HI, Moles I nitially 1.000×10^{-3} 2.000×10^{-3} 0 C hange -9.35×10^{-4} -9.35×10^{-4} $+1.87 \times 10^{-3}$ E quilibrium 6.5×10^{-5} 1.065×10^{-3} 1.87×10^{-3}				

$$
\mathrm{H}_{2}(\text { gas })+\mathrm{I}_{2}(\mathrm{gas})=2 \mathrm{HI}(\mathrm{gas})
$$

What Does the Value of K Mean?

If $K \gg 1$, the reaction is product-favored; product predominates at equilibrium.

If $\mathrm{K} \ll 1$, the reaction is reactant-favored; reactant predominates at equilibrium.

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
& =\frac{\left(1.87 \times 10^{-3}\right)^{2}}{\left(6.5 \times 10^{-5}\right)\left(1.065 \times 10^{-3}\right)} \\
& =51
\end{aligned}
$$

UNITS ?
Relationship between K_{c} and K_{p}
$K p=K c(R T)^{\Delta n}$
Where $\Delta n=$ (moles of gaseous product)

- (moles of gaseous reactant)
$K p=K c$
For H_{2} (gas) $+\mathrm{I}_{2}($ gas $)=2 \mathrm{HI}$ (gas)
WHY ?

$$
\text { For } 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \leftrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

The K_{p} and K_{c} expressions :

$$
\begin{gathered}
\mathrm{K}_{\mathrm{p}}=\left(\mathrm{P}_{\mathrm{NO2}}\right)^{4}\left(\mathrm{P}_{\mathrm{O} 2}\right) /\left(\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 5}\right)^{2} \\
\mathrm{~K}_{\mathrm{C}}=\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right] /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2} \\
\text { Is } \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}} ? \\
\mathrm{No}!
\end{gathered}
$$

HETEROGENEOUS EQUILIBRIUM

Pure Solids and Liquids do not have a concentration therefore they do not appear in the equilibrium expression

$$
\begin{gathered}
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\text { solid }) \\
\text { or } \\
\mathrm{AgCl}(\text { solid }) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{c}}=1 /\left[\mathrm{Ag}^{+}(\mathrm{aq})\right][\mathrm{Cl}(\mathrm{aq})] \\
\text { or } \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}(\mathrm{aq})\right][\mathrm{Cl}(\mathrm{aq})]=1 / \mathrm{K}_{\mathrm{c}}
\end{gathered}
$$

Le Châtelier's Principle

$$
3 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{O}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=284 \mathrm{~kJ}
$$

What would be the effect of
(a) Decreasing the volume of the system
(b) Increasing the pressure by adding O_{2}
(c) Decreasing the temperature
(d) Adding a catalyst

Le Châtelier's Principle

- The Effect of Changes in Pressure
- The Effect of Changes in Temperature
- Catalysts increase the rate of both the forward and reverse reactions. Equilibrium is achieved faster, but the equilibrium composition remains unaltered.

$3 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{O}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=284 \mathrm{~kJ}$
What would be the effect of
(a) Decreasing the volume of the system
(b) Increasing the pressure by adding O_{2}
(c) Decreasing the temperature
(d) Adding a catalyst

No Equilibrium for the 7 Strong Acids
or 7 Strong Bases
$\mathrm{HCl}(\mathrm{aq})$
$\mathrm{HBr}(\mathrm{aq})$
$\mathrm{HI}(\mathrm{aq})$

Conjugate Acids and Bases:

An Acid and a Base that differ only in the presence \{or absence\} of a proton.

What are the conjugate bases of the following Brønsted-Lowry acids

HClO_{4}	$\mathrm{ClO}_{4}{ }^{-}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}
HSO_{4}^{-}	SO_{4}^{-}
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$

Which one of the conjugate bases of the following Brønsted-Lowry acids is incorrect?
(a) ClO^{-}for HClO
(b) HS^{-}for $\mathrm{H}_{2} \mathrm{~S}$
(c) NH_{3} for NH_{4}^{+}
(d) $\mathrm{SO}_{4}{ }^{2-}$ for HSO_{4}^{-}
(e) $\mathrm{H}_{2} \mathrm{SO}_{4}$ for HSO_{4}^{-}
(e)

$$
\text { (e) } \mathrm{H}_{2} \mathrm{SO}_{4} \text { for }
$$

$$
x^{2}+x_{2}
$$

\qquad

Ion-Product Constant

This special equilibrium constant is referred to as the ion-product constant for water, K_{w}

$$
K_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$$
\text { At } 25^{\circ} \mathrm{C}, K_{w}=1.0 \times 10^{-14}
$$

pH is defined as
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Determine the pH of 0.50 M HF solution at $25^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{a}}=7.1 \times 10^{-4}$
$1^{\text {ST }}$ Write \& Balance "Reaction" $\mathrm{HF}(\mathrm{aq})=\mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
$2^{\text {nd }}$ Write Equilibrium Expression

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[F^{-}\right]}{[H F]}
$$

$$
\begin{gathered}
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[F^{-}\right]}{[H F]} \\
\mathrm{Ka}=7.1 \times 10^{-4} ;[\mathrm{HF}]=0.50-\mathrm{x} ; \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=\mathrm{x} \\
7.1 \times 10^{-4}=\frac{[\mathrm{x}][x]}{[0.50-x]}=\frac{\mathrm{x}^{2}}{0.50-\mathrm{x}} \approx \frac{\mathrm{x}^{2}}{0.50} \\
\mathrm{x}^{2} \cong\left(7.1 \times 10^{-4}\right)(0.50) \cong 3.55 \times 10^{-4} \\
\mathrm{x} \cong 1.9 \times 10^{-2}
\end{gathered}
$$

Initial Change Equilibrium

Determine pH of 0.50 M HF solution $\mathrm{K}_{\mathrm{a}}=7.1 \times 10^{-4}$

	$\mathrm{HF}(\mathrm{aq})=$		
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$			
Initial $(M):$	0.50	0.00	0.00
Change $(M):$	$-x$	$+x$	$+x$
Eqm $(M):$	$0.50-x$	x	x

WAS THE APPROXIMATION VALID?

$7.1 \times 10^{-4}=\frac{[x][x]}{[0.50-x]}=\frac{x^{2}}{0.50-x} \approx \frac{x^{2}}{0.50}$
No!
Why not?
Because $x \cong 1.9 \times 10^{-2}$ is not small compared to 0.50

$$
0.50-x \neq 0.50
$$

VALID APPROXIMATIONS ?

What was the difference between the two examples $\{\mathrm{HCN}(\mathrm{aq})$ and $\mathrm{HF}(\mathrm{aq})\}$?

Both are monoprotic acids
Both has an initial concentration of 0.50 M Right the difference was in the size of K_{a}

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=7.1 \times 10^{-4} \text { for } \mathrm{HF} \\
\mathrm{~K}_{\mathrm{a}}=4.9 \times 10^{-10} \text { for } \mathrm{HCN}
\end{gathered}
$$

> \% dissiciation of a 0.001 M monoprotic weak acid whose K_{a} is 1.6×10^{-10} ?
$\%$ Dissociation $=\frac{\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]} \times 100 \%$
$\%$ Dissociation $=\frac{\left[4.0 \times 10^{-7}\right]}{\left[1 \times 10^{-3}\right]} \times 100$

$$
\%=4 \times 10^{-2}
$$

Find pOH of a 0.10 M solution of Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$,
$\mathrm{K}_{6}=3.8 \times 10^{-10}$
$\mathrm{K}_{\mathrm{b}}=3.8 \times 10^{-10}$
Write, Balance and interpret

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}+(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})$
I 0.10 0 0 C -x x x E 0.10 x x
$K_{b}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.10-\mathrm{x}]}=3.8 \times 10^{-10}$
$\mathrm{x}=[\mathrm{OH}]=6.2 \times 10^{-5} \quad \mathrm{pOH}=-\log [\mathrm{OH}]=4.2$

Acid-Base Properties of Salts

- Salts that produce neutral solutions are those formed from strong acids and strong bases. For example $\mathfrak{N a C l}$
- Salts that produce basic solutions are those formed from weak acids and strong bases. For example MgCl_{2}
- Salts that produce acidic solutions are those formed from strong acids and weak bases. For example $\mathfrak{N a C l O}$

$$
\begin{gathered}
\mathrm{pH} \text { of a } 0.10 \mathrm{M} \text { solution of ammonia, } \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5} \\
\mathrm{NH}_{3}(\mathrm{aq})=\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} \\
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.10-\mathrm{x}]}=1.8 \times 10^{-5} \\
{\left[\mathrm{OH}^{-}\right]=1.34 \times 10^{-3}} \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=2.9 \\
\mathrm{pH}=14-2.9=12.1
\end{gathered}
$$

