Chapter 9 Molecular Geometries

and Bonding Theories

Coverage of Chapter 9

- 9.1 All
- 9.2 All
- 9.3 All
- 9.4 All
- 9.5 Omit Hybridization Involving d Orbitals
- 9.6 All
- 9.7 and 9.8 Omit ALL

MOLECULAR SHAPES

- The shape of a molecule plays an important role in its reactivity.
- By knowing the number of bonding and nonbonding electron pairs we can predict the shape of the molecule.

Two (2) Theories for MOLECULAR GEOMETRY

1. Valence Shell Electron Pair Repulsion (VSEPR) THEORY

&

2. The Valence Bond (VB) THEORY

Lewis Structures & Formal Charge

Formal charge is a charge assigned to each atom in a Lewis structure that helps to distinguish among competing structures.

What is the correct formula for Hypo Chlorous Acid HClO (aq)

$$H - Cl - O$$

or
 $H - O - Cl$

Hypo chlorite ion ClO -

Where does the H go on HClO?

ELECTRON DOMAINS

- Electron pairs are refered to as electron domains
- Single, double or triple bonds all count as one electron domain.

The atom A in this molecule, has four electron domains.

The First MOLECULAR GEOMETRY theory (VSEPR)

Valence Shell Electron Pair Repulsion theory

VSEPR Theory

- 1. To predict molecular shape, assume the valence electrons repel each other
- 2. The electrons adopt an arrangement in space to minimize e⁻ e⁻ repulsion
- 3. The molecule adopts whichever 3D geometry minimized this repulsion.

What Determines the Shape of a Molecule?

Four electron domains on N 3 bonding and 1 nonbonding

What Determines the Shape of a Molecule?

Electrons, whether they be bonding or nonbonding, repel each other. So electrons are placed as far as possible from each other

Two (2) Different "Types" of Molecules

- 1. Molecules with NO nonBonding electrons on the central atom
- 2. Molecules with nonBonding electrons on the central atom

Electron Domains & NonBonding Electrons

Example 1 CO₂

$$| \underline{\mathbf{O}} = \mathbf{C} = \underline{\mathbf{O}} |$$

How many electron domains on C

How many NonBonding electrons on C 0

Electron Domains & NonBonding Electrons

Example 2 H₂O

H - O - H

How many electron domains on O 4

How many NonBonding electrons on O 4

Molecular Geometries for molecules with no nonbonding electrons on central atom

There are five fundamental geometries:

- 1. Linear
- 2. Trigonal Planar
- 3. Tetrahedral
- 4. Trigonal bepyramidal
- 5. Octahedral

Only consider Three in detail

- 1. Linear
- 2. Trigonal Planar
- 3. Tetrahedral

In order to determine geometry

First Draw Lewis Dot Formula

MOLECULES IN WHICH THE CENTRAL ATOM HAS NO LONE PAIRS

ZINC CHLORIDE

 $Zn Cl_2 Zn (30) [Ar] 3d^{10} 4s^2$

$$Cl - Zn - Cl$$

$$B - A - B$$

$$AB_2 = LINEAR$$

AB₂ Molecules Such as CO₂ are *Linear*

(Molecules With <u>NO</u> UnPaired Electrons On the Central Atom)

$$B - A - B$$

Molecular Shape and Molecular Polarity

AB₃ Molecules Such as BF₃ are *Planar*

(Molecules With **NO** UnPaired Electrons On the Central Atom)

Formula

Number of Valence e^- 3 21 = 24 total

 $B F_3$

• Lewis Structure

$$\frac{\bar{F} - B - \bar{F}}{|F|}$$

AB₃ (Molecules With NO UnPaired Electrons On the Central Atom) Such as BF₃ are Planar

AB₄ Molecules Such as CH₄ are Tetrahedral (Molecules With NO UnPaired Electrons On the Central Atom)

• Number of Valence e^- 4 4 = 8 total

• Lewis Structure
$$H - C - H$$

AB₄ Such as CH₄ are Tetrahedral

(Molecules With NO UnPaired Electrons On the Central Atom)

AB₄ Molecules Such as CCl₄ are Tetrahedral Carbon TetraChloride

AB₅ Such as PCl₅ are Triangular bipyramidal

- Name?
- Number of Bonds?
- Lewis dot structure?

AB₆ Such as SF₆ are Octahedral

- Name?
- Number of Bonds?
- Lewis dot structure?

Molecules With NO UNPaired e-

Molecules with NO unpaired e⁻ on Central Atom

1.	2 Bonds AB_2	or	AX_2	e.g. CO ₂
2.	3 Bonds AB ₃	or	AX_3	e.g. BF ₃
3.	4 BondsAB ₄	or	AX_4	e.g. CH ₄
4.	5 Bonds AB ₅	or	AX_5	e.g. PCl ₅
5.	6 Bonds AB ₆	or	AX_6	e.g. SF ₆

Polarity

Part 2. of VSEPR Theory

CENTRAL ATOM HAS LONE PAIRS

Molecules With UnPaired Electrons On the Central Atom

<u>Class</u> <u>Example</u> <u>Geometry</u>

• AB_2E $SO_2 & O_3$ Bent

• AB_2E_2 H_2O Bent

• AB₃E NH₃ Trigonal pyramidal

1. AB₂E OZONE

2. AB₂E₂ WATER

AB₂E₂ (Molecules With UnPaired Electrons On the Central Atom) Such as H₂O are Bent

3. AB_3E **AMMONIA**

(tetrahedral)

(trigonal pyramidal)

AB₃E (Molecules With UnPaired Electrons On the Central Atom) Such as NH₃ are NOT Planar

Predict Molecular Shapes

```
1. SiCl<sub>4</sub> _____
```

Give the electron domain and molecular geometries for

	<u>electron domain</u>	molecular geometry
(a) N_2O		
(b) SO ₃		
(c) PCl ₃		
(d) NH ₂ Cl		

Examples of AB₂ molecules

- Linear AB₂ How many bonds
 CO₂
- Bent AB₂E How many "bonds" SO₂ and NO₂
- Bent AB₂E₂ How many "bonds" H₂O

Examples of AB₃ molecules

- Planar AB₃ How many bonds
 BF₃
- Pyramidal AB₃E How many "bonds" NH₃
- T shape AB_3E_2 How many "bonds" ClF_3

Two (2) Theories for MOLECULAR GEOMETRY

1. Valence Shell Electron Pair Repulsion (VSEPR) THEORY

Now consider

2. The Valence Bond (VB) THEORY

VALENCE BOND Method

uses molecular orbitals not Atomic Orbitals

WHAT IS A MOLECULAR ORGITAL?

Orbitals used in bonding of Molecules

CH₄ as an EXAMPLE

Ground State Electron Configuration

C (6 e⁻) 1s² 2s² 2p² = (
$$\uparrow\downarrow$$
) ($\uparrow\downarrow$) (\uparrow) (\uparrow) () () Only place for two bonds to form $\uparrow\uparrow$

Therefore would predict CH_2 formation and not CH_4

But CH_2 does not exist while CH_4 does

C (6 e⁻) 1s² 2s² 2p² = (
$$\uparrow\downarrow$$
) ($\uparrow\downarrow$) (\uparrow) (\uparrow) ()

Only place for two bonds to form

Excited State Electron Configuration

$$C (6 e^{-}) 1s^{2} 2s^{1} 2p^{3} = (\uparrow \downarrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow)$$

One electron from H goes into an s orbital and Three from H go into the p orbitals

The BONDS in CH₄ are ALL the SAME!

One electron in an s orbital and Three in p orbitals would create different bonds.

Since All the Bonds are Equal, this cannot be correct

INTRODUCE THE CONCEPT OF HYBRIDIZATION

Hybridization

In order to made All Bonding sites equal, we must create NEW Orbitals.

s, p, d, f are ATOMIC ORBITALS

MOLECULAR ORBITALS are formed

from Atomic orbitals

VALENCE BOND THEORY

VALENCE SHELL ORBITALS <u>HYBRIDIZE</u>

THE <u>ORIENTATION</u> OF ALL HYBRID VALENCE SHELL ORBITALS <u>DETERMINES</u> THE GEOMETRY OF THE MOLECULE

MOLECULAR ORBITALS are formed from ATOMIC ORBITALS

Atomic Orbitals

Molecular Orbitals

one S + one P

Two (2) SP

one S + two P

Three (3) SP²

one S + three P

Four (4) SP³

MOLECULAR ORBITALS

They are called

SP

 SP^2

 SP^3

SP³d and

 SP^3d^2

sp³ HYBRIDIZATION

TETRAHEDRAL
Bond Angles
109½°

Methane CH_4 Four σ Bonds on C

sp² HYBRIDIZATION

sp HYBRIDIZATION one S orbital + one P orbital

Carbon is NOT The Only Element That Undergoes sp³ HYBRIDIZATION

In CH₃COOH, there are three (3) hybridized atoms.

Geometry is assign about each hybridized atom separately.