Chapter 9 Molecular Geometries and Bonding Theories ### Coverage of Chapter 9 - 9.1 All - 9.2 All - 9.3 All - 9.4 All - 9.5 Omit Hybridization Involving d Orbitals - 9.6 All - 9.7 and 9.8 Omit ALL #### MOLECULAR SHAPES - The shape of a molecule plays an important role in its reactivity. - By knowing the number of bonding and nonbonding electron pairs we can predict the shape of the molecule. # Two (2) Theories for MOLECULAR GEOMETRY 1. Valence Shell Electron Pair Repulsion (VSEPR) THEORY & 2. The Valence Bond (VB) THEORY # Lewis Structures & Formal Charge Formal charge is a charge assigned to each atom in a Lewis structure that helps to distinguish among competing structures. # What is the correct formula for Hypo Chlorous Acid HClO (aq) $$H - Cl - O$$ or $H - O - Cl$ # Hypo chlorite ion ClO - ### Where does the H go on HClO? #### ELECTRON DOMAINS - Electron pairs are refered to as electron domains - Single, double or triple bonds all count as one electron domain. The atom A in this molecule, has four electron domains. # The First MOLECULAR GEOMETRY theory (VSEPR) # Valence Shell Electron Pair Repulsion theory ### **VSEPR** Theory - 1. To predict molecular shape, assume the valence electrons repel each other - 2. The electrons adopt an arrangement in space to minimize e⁻ e⁻ repulsion - 3. The molecule adopts whichever 3D geometry minimized this repulsion. ### What Determines the Shape of a Molecule? Four electron domains on N 3 bonding and 1 nonbonding #### What Determines the Shape of a Molecule? Electrons, whether they be bonding or nonbonding, repel each other. So electrons are placed as far as possible from each other # Two (2) Different "Types" of Molecules - 1. Molecules with NO nonBonding electrons on the central atom - 2. Molecules with nonBonding electrons on the central atom # Electron Domains & NonBonding Electrons Example 1 CO₂ $$| \underline{\mathbf{O}} = \mathbf{C} = \underline{\mathbf{O}} |$$ How many electron domains on C How many NonBonding electrons on C 0 # Electron Domains & NonBonding Electrons Example 2 H₂O H - O - H How many electron domains on O 4 How many NonBonding electrons on O 4 ### Molecular Geometries for molecules with no nonbonding electrons on central atom There are five fundamental geometries: - 1. Linear - 2. Trigonal Planar - 3. Tetrahedral - 4. Trigonal bepyramidal - 5. Octahedral ## Only consider Three in detail - 1. Linear - 2. Trigonal Planar - 3. Tetrahedral ## In order to determine geometry First Draw Lewis Dot Formula ## MOLECULES IN WHICH THE CENTRAL ATOM HAS NO LONE PAIRS ZINC CHLORIDE $Zn Cl_2 Zn (30) [Ar] 3d^{10} 4s^2$ $$Cl - Zn - Cl$$ $$B - A - B$$ $$AB_2 = LINEAR$$ ### AB₂ Molecules Such as CO₂ are *Linear* (Molecules With <u>NO</u> UnPaired Electrons On the Central Atom) $$B - A - B$$ # Molecular Shape and Molecular Polarity ### AB₃ Molecules Such as BF₃ are *Planar* (Molecules With **NO** UnPaired Electrons On the Central Atom) Formula Number of Valence e^- 3 21 = 24 total $B F_3$ • Lewis Structure $$\frac{\bar{F} - B - \bar{F}}{|F|}$$ AB₃ (Molecules With NO UnPaired Electrons On the Central Atom) Such as BF₃ are Planar # AB₄ Molecules Such as CH₄ are Tetrahedral (Molecules With NO UnPaired Electrons On the Central Atom) • Number of Valence e^- 4 4 = 8 total • Lewis Structure $$H - C - H$$ ### AB₄ Such as CH₄ are Tetrahedral (Molecules With NO UnPaired Electrons On the Central Atom) # AB₄ Molecules Such as CCl₄ are Tetrahedral Carbon TetraChloride ### AB₅ Such as PCl₅ are Triangular bipyramidal - Name? - Number of Bonds? - Lewis dot structure? ### AB₆ Such as SF₆ are Octahedral - Name? - Number of Bonds? - Lewis dot structure? #### Molecules With NO UNPaired e- # Molecules with NO unpaired e⁻ on Central Atom | 1. | 2 Bonds AB_2 | or | AX_2 | e.g. CO ₂ | |----|-------------------------|----|--------|-----------------------| | 2. | 3 Bonds AB ₃ | or | AX_3 | e.g. BF ₃ | | 3. | 4 BondsAB ₄ | or | AX_4 | e.g. CH ₄ | | 4. | 5 Bonds AB ₅ | or | AX_5 | e.g. PCl ₅ | | 5. | 6 Bonds AB ₆ | or | AX_6 | e.g. SF ₆ | ## Polarity ### Part 2. of VSEPR Theory # CENTRAL ATOM HAS LONE PAIRS # Molecules With UnPaired Electrons On the Central Atom <u>Class</u> <u>Example</u> <u>Geometry</u> • AB_2E $SO_2 & O_3$ Bent • AB_2E_2 H_2O Bent • AB₃E NH₃ Trigonal pyramidal ### 1. AB₂E OZONE 2. AB₂E₂ WATER ### AB₂E₂ (Molecules With UnPaired Electrons On the Central Atom) Such as H₂O are Bent #### 3. AB_3E **AMMONIA** (tetrahedral) (trigonal pyramidal) AB₃E (Molecules With UnPaired Electrons On the Central Atom) Such as NH₃ are NOT Planar ### Predict Molecular Shapes ``` 1. SiCl₄ _____ ``` ### Give the electron domain and molecular geometries for | | <u>electron domain</u> | molecular geometry | |------------------------|------------------------|--------------------| | (a) N_2O | | | | (b) SO ₃ | | | | (c) PCl ₃ | | | | (d) NH ₂ Cl | | | ### Examples of AB₂ molecules - Linear AB₂ How many bonds CO₂ - Bent AB₂E How many "bonds" SO₂ and NO₂ - Bent AB₂E₂ How many "bonds" H₂O ### Examples of AB₃ molecules - Planar AB₃ How many bonds BF₃ - Pyramidal AB₃E How many "bonds" NH₃ - T shape AB_3E_2 How many "bonds" ClF_3 ### Two (2) Theories for MOLECULAR GEOMETRY 1. Valence Shell Electron Pair Repulsion (VSEPR) THEORY Now consider 2. The Valence Bond (VB) THEORY ### VALENCE BOND Method uses molecular orbitals not Atomic Orbitals WHAT IS A MOLECULAR ORGITAL? Orbitals used in bonding of Molecules #### CH₄ as an EXAMPLE Ground State Electron Configuration C (6 e⁻) 1s² 2s² 2p² = ($$\uparrow\downarrow$$) ($\uparrow\downarrow$) (\uparrow) (\uparrow) () () Only place for two bonds to form $\uparrow\uparrow$ Therefore would predict CH_2 formation and not CH_4 But CH_2 does not exist while CH_4 does C (6 e⁻) 1s² 2s² 2p² = ($$\uparrow\downarrow$$) ($\uparrow\downarrow$) (\uparrow) (\uparrow) () Only place for two bonds to form **Excited State Electron Configuration** $$C (6 e^{-}) 1s^{2} 2s^{1} 2p^{3} = (\uparrow \downarrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow)$$ One electron from H goes into an s orbital and Three from H go into the p orbitals ### The BONDS in CH₄ are ALL the SAME! One electron in an s orbital and Three in p orbitals would create different bonds. Since All the Bonds are Equal, this cannot be correct ## INTRODUCE THE CONCEPT OF HYBRIDIZATION ### Hybridization In order to made All Bonding sites equal, we must create NEW Orbitals. s, p, d, f are ATOMIC ORBITALS MOLECULAR ORBITALS are formed from Atomic orbitals #### VALENCE BOND THEORY ## VALENCE SHELL ORBITALS <u>HYBRIDIZE</u> THE <u>ORIENTATION</u> OF ALL HYBRID VALENCE SHELL ORBITALS <u>DETERMINES</u> THE GEOMETRY OF THE MOLECULE # MOLECULAR ORBITALS are formed from ATOMIC ORBITALS **Atomic Orbitals** Molecular Orbitals one S + one P Two (2) SP one S + two P Three (3) SP² one S + three P Four (4) SP³ #### MOLECULAR ORBITALS They are called SP SP^2 SP^3 SP³d and SP^3d^2 ### sp³ HYBRIDIZATION TETRAHEDRAL Bond Angles 109½° Methane CH_4 Four σ Bonds on C ### sp² HYBRIDIZATION ### sp HYBRIDIZATION one S orbital + one P orbital ### Carbon is NOT The Only Element That Undergoes sp³ HYBRIDIZATION In CH₃COOH, there are three (3) hybridized atoms. Geometry is assign about each hybridized atom separately.